Nov 3

STScI: How Nasa’s Roman Telescope Will Scan for Show Stopping Explosions

Two bright blue circular shapes that appear to be joined are left of center. They are illustrations of neutron stars merging. Debris, which is also white and bright blue, emanates in misshapen patterns primarily from where they are joining at the center.
Following its launch no later than May 2027, NASA’s Roman Space Telescope will survey the same areas of the sky every few days. Researchers will mine these data to identify kilonovae – explosions that happen when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are. Credit: NASA, Joseph Olmsted (STScI)

What happens when the densest, most massive stars – that are also super small – collide? They send out brilliant explosions known as kilonovae. Think of these events as the universe’s natural fireworks. Theorists suspect they periodically occur all across the cosmos – both near and far. Scientists will soon have an additional observatory to help follow up on and even scout these remarkable events: NASA’s Nancy Grace Roman Space Telescope, which is set to launch by May 2027.

The key actors in kilonovae are neutron stars, the central cores of stars that collapsed under gravity during supernova explosions. They each have a mass similar to the Sun, but are only about 6 miles (10 kilometers) in diameter. And when they collide, they send out debris moving near the speed of light. These explosions are also thought to forge heavy elements, like gold, platinum, and strontium (which gives actual fireworks their stunning reds). Kilonovae shoot those elements across space, potentially allowing them to end up in rocks forming the crust of terrestrial planets like Earth.

The astronomical community captured one of these remarkable kilonova events in 2017. Scientists at the National Science Foundation’s Laser Interferometer Gravitational-Wave Observatory (LIGO) detected the collision of two neutron stars first with gravitational waves – ripples in space-time. Almost simultaneously, NASA’s Fermi Gamma-ray Space Telescope detected high-energy light. NASA quickly pivoted to observe the event with a broader fleet of telescopes, and captured the fading glow of the blast’s expanding debris in a series of images.

But the players in this example collided practically in our “backyard,” at least in astronomical terms. They lie only 130 million light-years away. There must be more kilonovae – and many that are farther flung – dotting our ever-active universe.

“We don’t yet know the rate of these events,” said Daniel M. Scolnic, an assistant professor of physics at Duke University in Durham, North Carolina. Scolnic led a study that estimates the number of kilonovae that could be discovered by past, present, and future observatories including Roman. “Is the single kilonova we identified typical? How bright are these explosions? What types of galaxies do they occur in?” Existing telescopes can’t cover wide enough areas or observe deeply enough to find more distant examples, but that will change with Roman.

Read More on the Hubblesite